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SUMMARY

This paper presents a finite element solution algorithm for three-dimensional isothermal turbulent flows
for mold-filling applications. The problems of interest present unusual challenges for both the physical
modelling and the solution algorithm. High-Reynolds number transient turbulent flows with free surfaces
have to be computed on complex three-dimensional geometries. In this work, a segregated algorithm is
used to solve the Navier–Stokes, turbulence and front-tracking equations. The streamline–upwind/
Petrov–Galerkin method is used to obtain stable solutions to convection-dominated problems. Turbu-
lence is modelled using either a one-equation turbulence model or the k–o two-equation model with wall
functions. Turbulence equations are solved for the natural logarithm of the turbulence variables. The
change of dependent variables allows for a robust solution algorithm and good predictions even on
coarse meshes. This is very important in the case of large three-dimensional applications for which highly
refined meshes result in untreatable large numbers of elements. The position of the flow front in the mold
cavity is computed using a level set approach. Finally, equations are integrated in time using an implicit
Euler scheme. The methodology presents the robustness and cost effectiveness needed to tackle complex
industrial applications. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Industrial mold-filling problems involve fluid flow coupled with free surfaces, non-constant
material properties, and complicated three-dimensional geometries. The flow may be at a high
Reynolds number or on geometries having high aspect ratio components. Strong non-linear
dependence of flow properties on velocity are commonplace, such as large and rapid spatial
variations of the eddy viscosity for turbulent flows. During the casting of complex industrial
parts, the molten alloy flows through converging and diverging sections as well as in areas
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presenting drastic changes in thickness and flow directions. Typical examples of these cases
include flow in ribs, short flow lengths, large transitions in cavity thickness, sudden con-
tractions/expansions (gates), corners and channels with low aspect ratios. In many cases
these regions can be the source of casting problems (air entrapment, porosity, etc.) and a
more detailed understanding of the flow characteristics in these areas might be useful in
solving undesirable situations. Such problems place special demands on the solution al-
gorithm. The technique must be robust and provide accurate solutions for a wide range of
parameters. This paper presents a finite element method capable of tackling these diffi-
culties.

When using finite elements, the common choice is the standard Galerkin method. There-
fore, the trial and interpolation functions are identical, which makes the method work best
when the diffusion is important. However, if convection dominates spurious oscillations can
occur in the numerical solution. Moreover, the Galerkin method involves limitations in the
choice of velocity–pressure interpolants, which must satisfy the Babuška–Brezzi condition.
In the last decade, stabilization methods, such as the streamline–upwind/Petrov–Galerkin
(SUPG) and the Galerkin/least-squares (GLS), became more and more popular. Such meth-
ods solve convective-dominated problems by adding stabilization terms to the Galerkin
formulation [1–3]. Moreover, SUPG and GLS methods allow the use of velocity and
pressure interpolants that do not satisfy the Babuška–Brezzi condition [2]. This makes it
possible to use linear equal-order interpolation functions, which are both computationally
effective and easy to implement, especially for three-dimensional applications. Another criti-
cally important benefit of stabilized methods is that the underlying linear systems become
amenable to non-symmetric preconditioned iterative solvers, suitable for large-scale three-
dimensional problems [4].

Two-equation turbulence models are very popular for solving turbulent flows. They usu-
ally involve transport equations for the turbulence kinetic energy (TKE) and for a second
turbulence variable in order to evaluate the eddy viscosity.

Two-equation models with wall functions have shown to be a powerful tool to solve
complex turbulent flows because they provide good predictions at low computational cost
[5–7]. One major hurdle in the numerical treatment of two-equation models lies in ensuring
that the turbulence variables (here k and e) remain positive throughout the flow domain
and during the course of iterations. The same problem occurs when using one-equation
turbulence models. Failure to ensure positivity can have devastating effects on the solution
process. The eddy viscosity may locally become negative and result in immediate and
irrecoverable breakdown of iterations. The current authors propose to use a change of
dependent variables for turbulence quantities, which results in improved solution quality
[8,9]. The computational variables are the natural logarithm of the original turbulence
variables. This choice has several important advantages. Turbulence variables and source
terms in the turbulence equations are now obtained as the exponential of the computa-
tional-dependent variables. Hence, these terms are all strictly positive throughout the do-
main. The change of variables also results in improved accuracy in regions of rapid
variation of turbulence fields, such as boundary layers, stagnation points, and shear layers
[9]. This behavior is mainly due to the fact that a linear interpolation of the logarithms is
closer to the real solution that a linear interpolation of the turbulence variables themselves.
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The improvement in the solution accuracy is even more pronounced on coarse meshes [9].
This last advantage is very important in the case of large three-dimensional applications for
which the mesh refinement generates a large increase in the size of the systems to be
solved. As an example, a reduction by a factor of two in the size of the elements results in
an eight-times increase in the number of elements. Often such refined meshes become too
large to be solved in a reasonable amount of time. A unified solution algorithm for
two-equation models of turbulence based on the use of logarithmic variables is presented in
Reference [10]. Applications are shown for the standard k–e model, the k–t model of
Speziale, and the k–v model of Wilcox. The procedure is general and is applicable to all
one- and two-equation models of turbulence.

In this work, turbulence is modeled by using the k–e model of turbulence. A simple
one-equation model based on the Prandtl mixing length hypothesis is also presented. The
equations of both turbulence models are solved for the logarithms of turbulence variables.
The position of the flow front in the mold cavity is computed using a level set approach.
Integration in time is made using an implicit Euler scheme. Finally, at each time step, the
system of equations (Navier–Stokes, turbulence and front-tracking equations) is solved in a
segregated manner.

The paper is organized as follows. Section 2 presents the flow and front-tracking equa-
tions. Section 3 discusses the change of variables leading to the logarithmic form of the
turbulence equations. Section 4 summarizes the finite element formulation. The solution
algorithm is discussed in Section 5. Section 6 presents results obtained on mold-filling
problems. The numerical solutions are compared with the experiments. Section 7 concludes
the paper.

2. GOVERNING EQUATIONS

The solution method solves the Reynolds-averaged Navier–Stokes (RANS) and turbulence
equations on a portion of the cavity, which at a given time is partly filled with fluid and
partly filled with air. For each time step, the Navier–Stokes equations are solved only on
elements which contain fluid (filled region of the cavity) or which can contain fluid on the
next time step (transition zone), as determined by using the maximum flow velocity on the
fluid–air interface. The velocity field in the fluid always satisfies a divergence-free condi-
tion. Consequently, flow front progression is not simply extrapolated from the normal
velocity of the interface but is based on the incompressible flow field and convected accord-
ingly. In the transition zone, the pressure is considered constant, equal, for example, to the
atmospheric pressure. Therefore, for entirely unfilled elements, the pressure gradient and the
continuity equation are dropped from the mathematical model. That makes the air in the
transition zone behave like an infinitely compressible fluid. Another choice in this imple-
mentation is to consider the air in the transition zone inertialess. Being inertialess, the air
will respond instantaneously to the constraints imposed by the liquid progression. This
overcomes the problem of computing undefined time derivatives in the transition zone.
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2.1. Reynolds-a6eraged Na6ier–Stokes equations

The flow regime of interest is modeled by the incompressible RANS equations

r
�(u
(t

+u·9u
�

= −9p+9 · [2(m+mT)g; (u)]+rg (1)

9 ·u=0 (2)

where g; (u)= (9u+9uT)/2 is the strain rate tensor, r is the density, m is the fluid viscosity, and
g is the gravity force. The properties (density and fluid viscosity) depend on a le6el set function
F denoting the interface position. For example, density in a filled element has the value rl, and
in an unfilled element the value rg (here rg=0), and for partly filled elements is interpolated
between those two values based on the volumetric fraction.

Boundary conditions imposed on the Navier–Stokes equations are

u=ui or 2(m+mT)g; (u) ·n−pn=ti on Ginlet

2(m+mT)g; (u) ·n−pn=tw

u·n=0
"

on Gwall (3)

The turbulent viscosity mT is computed using either a one-equation turbulence model or the
two-equation k–e model. The system is closed by including the transport equations for
turbulence quantities.

2.2. The one-equation model

The one-equation turbulence model used here solves a transport equation for the turbulence
kinetic energy k [11]

r
�(k
(t

+u·9k
�

=9 ·
��

m+
mT

sk

�
9k
n

+mTP(u)−re (4)

where sk is a constant (sk=1.0) and the production of turbulence is defined as

P(u)=9u: (9u+9uT) (5)

The TKE dissipation, e, is computed from the turbulence kinetic energy and the mixing length,
lm, as

e=
Cm

3/4k3/2

lm
(6)

where Cm is a constant taken as 0.09. Finally, the eddy viscosity is computed from k and lm by
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mT=rCm
1/4k1/2lm (7)

In the present approach, we consider that the mixing length is given by lm=ky [12], where k

is the von Karman constant, k=0.4, and y is the distance to the nearest wall.

2.3. The standard k–e model

For this model, the turbulence quantities are the turbulence kinetic energy k and its dissipation
rate e. Hence, an additional transport equation for e must be solved [11]

r
�(e
(t

+u·9e
�

=9 ·
��

m+
mT

se

�
9e
n

+Cel

e

k
mTP(u)−Ce2r

e2

k

The eddy viscosity is computed from k and e by

mT=rCm

k2

e
(8)

The constants sk, se, Ce1, Ce2, Cm take on the standard values [11]

sk=1.0, se=1.3, Ce1=1.44, Ce2=1.92, Cm=0.09

2.4. Wall boundary conditions

On the boundaries, a combination of Neumann (tangential) and Dirichlet (normal) conditions
are imposed using wall functions. These describe the asymptotic behavior of the different
variables near a solid wall [11]. The velocity is constrained to be tangent to the wall by
imposing the normal velocity to zero. This tangency condition is imposed in a nodal fashion.
Following Engelman et al. [13], the normal direction is computed for each node on the surface
such that the global mass flux across the boundary is zero. When using continuous piecewise
linear velocities, computation of the nodal normal direction at node i reduces to

nxi
=

1
ni

%
ei

A (ei )nx
(ei ), nyi

=
1
ni

%
ei

A (ei )ny
(ei ), nzi

=
1
ni

%
ei

A (ei )nz
(ei ) (9)

where

ni=
��%

ei

A (ei )nx
(ei )�2+

�%
ei

A (ei )nx
(ei )�2

+
�%

ei

A (ei )nx
(ei )�2n1/2

(10)

In the above equations, ei denotes the boundary elements containing the node i, A (ei ) is the
surface of the boundary element ei, and nx

(ei ), ny
(ei ), nz

(ei ) represent the Cartesian components of
the unit vector, nomal to element ei.

The wall shear stress given by the law of the wall is imposed on two orthogonal tangential
directions defining the tangency plane. The present procedure deals with arbitrary three-
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dimensional geometries, and the solution approach is adapted to cases for which the normal
and tangential directions do not correspond to the Cartesian co-ordinates. We use a simple yet
efficient approach, which needs no change of co-ordinates between the Cartesian system and
the local normal–tangential system. Let us note the momentum equation residual as a vector
R (the solution is obtained for R=0) for which the Cartesian components are noted Rx, Ry,
and Rz

R=Rx i. +Ry j. +Rzk. =0 (11)

Here i. , j. , and k. are unit vectors in the Cartesian frame of reference. The momentum equation
in a given direction, a=ax i. +ay j. +azk. , is obtained directly by projecting the residual vector
R onto that direction [13]

Ra=R·a=Rxax+Ryay+Rzaz=0 (12)

This applies to both the system of partial differential equations and its variational form.
Therefore, the finite element equations corresponding to the two tangential directions t. 1 and t. 2
are simply obtained as

Rt 1
=R·t. 1=Rxtx1+Ryty1+Rztz1=0 (13)

Rt 2
=R·t. 2=Rxtx2+Ryty2+Rztz2=0 (14)

and we remark that the unknowns remain the Cartesian components of the velocity and no
change of co-ordinates in needed. Equations in tangential directions are just linear combina-
tions of the equations in Cartesian co-ordinates. The third nodal equation constrains the
normal velocity to be zero

u·n̂=unx+6ny+wnz=0 (15)

where nx, ny, and nz are the Cartesian components of the nodal unit normal vector n̂.
It remains to determine the value of the wall shear stress, which is given by the law of the

wall

tw= −
rCm

1/4kw
1/2

U+ ut (16)

where

U+ =

Á
Ã
Í
Ã
Ä

y+, y+Byc
+

1
k

ln(Ey+), y+]yc
+

(17)
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y+ =
rCm

1/4kw
1/2y

m
(18)

Here ut is the tangential velocity (ut= (u·t. 1)t. 1 for the first tangential direction and ut= (u·t. 2)t. 2
for the second one), y is the distance between the computational boundary and the wall, k is
the von Karman constant and E is a roughness parameter (E=9.0 for smooth walls).
Equation (16) indicates that the shear stress acts in the opposite direction of that of the
tangential velocity. The TKE values at boundary points kw are computed implicitly by setting
the normal derivative of the TKE to zero at the wall. Finally, for the k–e model, the TKE
dissipation rate on boundary points is obtained by using

ew=
Cm

3/4kw
3/2

ky
(19)

2.5. Front-tracking equation

The position of the flow front in the cavity is modeled using a level set method [14,15]. This
approach defines a smooth function F(x, t) such that a critical value Fc represents the position
of the free surface. The function F(x, t) is defined as

F(x, t)=

Á
Ã
Í
Ã
Ä

Fc+d(x, t), x in filled region
Fc, x on the interface
Fc−d(x, t), x in empty region

(20)

where d(x) represents the distance from the interface [16]. Initial values F(x, t=0) are given to
define the initial position of the flow front. The pseudo-concentration function is convected
using the velocity field provided by the solution of the Navier–Stokes equations

(F
(t

+u·9F=0 on V (21)

The function F is reinitialized after each time step to insure mass conservation of the liquid
phase. The mass correction procedure is as follows:

1. Locate the free surface and reinitialize F using Equation (20).
2. Compute the theoretical volume filled Vtheo from the volume filled at

the previous time step Vf0 and the volumetric flux entering the domain,
Vtheo=Vf0+Dt 	Ginlet

�u·n̂� ds.
3. Find F* such that Vtheo=Vf(F*), with Vf(F*) representing the volume of

the cavity where F(x)\F*. The surface F(x)=F* represents the mass
conserving free surface.

4. Modify F in order to translate the corrected interface from F* to Fc:
F(x)=F(x)−F*+Fc.
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3. LOGARITHMIC FORM OF THE TURBULENCE EQUATIONS

While mathematically correct, the turbulence equations in the previous section may lead to
difficulties in the numerical solution algorithm. For example, the eddy viscosity may become
negative in some cases if one of the turbulence variables becomes negative. This will cause a
dramatic breakdown of the solution algorithm. Also, several source terms contain division by
the value of one turbulence variable (k for example). Negative or small values of the
denominator can lead to an improper sign or overly large values for mT or for some source
terms. Enhanced robustness of the algorithm is achieved if one can ensure that turbulence
variables remain positive throughout the domain and during the course of iterations.

One way to preserve positivity of the dependent variables consists of solving for their
logarithms [8,9]. This can be viewed as using the following change of dependent variables:

K= ln(k), E= ln(e) (22)

Solving for K and E guarantees that k and e will remain positive throughout the
computations. Hence, the eddy viscosity mT will always remain positive. This approach offers
other advantages. Turbulence quantities most often present very steep fronts, which are
difficult to resolve accurately. The fields of the logarithmic variables K and E present
smoother variations than those of k and e because the logarithm varies more slowly than its
arguments. Hence, more accurate solutions are obtained when logarithmic variables are used
[9]. A detailed comparison of the traditional solution procedure using k and e as dependent
variables and that solving for the logarithms may be found in References [9,10].

The equation for K is obtained by first dividing the k-equation by k, and by nothing that
the gradient of K is equal to the gradient of k divided by k (9K= (9k)/k). The E-equation
is obtained by a similar transformation. The turbulence equations and the eddy viscosity
definition for logarithmic variables are then as follows:

one-equation model

r
�(K
(t

+uK ·9K
�

=9 ·
��

m+
mT

sk

�
9K

n
+rCm

1/4 e−K/2lmP(u)−
rCm

3/4

lm
eK/2 (23)

mT=rCm
1/4 eK/2lm (24)

k–e model

r
�(K
(t

+uK ·9K
�

=9 ·
��

m+
mT

sk

�
9K

n
+mT e−KP(u)−r eE−K (25)

r
�(E
(t

+uE ·9E
�

=9 ·
��

m+
mT

se

�
9E

n
+Ce1mT e−KP(u)−Ce2r eE−K (26)

mT=rCm e2K−E (27)
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The modified velocities uK and uE are defined as

uK=u−
1
r

�
m+

mT

sk

�
9K (28)

uE=u−
1
r

�
m+

mT

se

�
9E (29)

Note that the equations for logarithmic variables are equivalent to the original equations of
the turbulence models. Hence, there is no change in the turbulence models. The only
modification is that the computational variables are now the logarithms of the turbulence
quantities. The use of logarithmic variables has removed the potentially troublesome divisions
by k and e. Finally, a number of other worrisome divisions have been removed from the
transport equations. The price to pay for this advantage is the appearance of exponentials in
the right-hand side of the turbulence equations. However, since k and e take on small values,
the exponential is very flat so that the non-linearities are mild. In fact, our experience indicates
that the use of logarithmic variables significantly enhances convergence of the solver.

4. VARIATIONAL FORMULATION

The incompressible Navier–Stokes and turbulence equations in the cavity are solved by a
SUPG formulation [2,3,17]. Stabilization methods such as SUPG and GLS are built by adding
stabilization terms to the Galerkin formulation. The Galerkin part of the variational equations
is obtained by multiplying equations (1) by appropriate test functions and integrating over the
domain of interest. Weak terms are then obtained by using the divergence theorem applied to
the momentum diffusion and pressure gradient terms. The SUPG method contains additional
stabilization terms that are integrated only on the element interiors. These terms provide
smooth solutions to convection-dominated flows and deal with the velocity–pressure coupling
so that equal-order interpolation results in a stable numerical scheme [2,3,17]. This makes it
possible to use elements that do not satisfy the Babuška–Brezzi condition as is the case of the
linear P1–P1 element [2,18]. SUPG also stabilizes the resulting linear systems, making them
amenable for robust iterative solution. This last advantage is of critical importance for
large-scale applications. For the Navier–Stokes equations and the linear elements used here,
SUPG and GLS methods are identical.

The SUPG variational formulation of the momentum–continuity equations is [17]&
V

�
r
(u
(t

+ru·9u−rg
�

v dV+
&

V
2(m+mT)g; (u): g; (v) dV−

&
V

p9 ·v dV+
&

V
9 ·uq dV

+%
K

&
VK

!
r
(u
(t

+ru·9u+9p−9 · [2(m+mT)g; (u)]−pg
"

·tu{ru·9v+9q} dVK

+%
K

&
VK

9 ·ud9 ·v dVK=0 (30)
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The integrals over the entire domain identify the Galerkin method, while the stabilization
terms are integrated only on the element interiors. The stabilization parameters tu and d are
defined as [19,20]

tu=
��2r

Dt
�2

+
�2r �u�

hK

�2

+
�4(m+mT)

mkhK
2

�2n−1/2

(31)

d=
hK

2

2tu

(32)

Here hK is the size of the element K. For linear elements, the coefficient mk is set to 1/3 (see
References [17,18]).

The same procedure is applied to the logarithmic form of the turbulence equations and to
the front-tracking equation. For example, the K-equation of the one-equation model results in&

V

�
r
(K

(t
+ruK ·9K−rCm

1/4 e−K/2lmP(u)+
rCm

3/4

lm
eK/2�w dV+

&
V

�
m+

mT

sk

�
9K ·9w dV

+%
K

&
VK

!
r
(K

(t
+ruK ·9K−9 ·

��
m+

mT

sk

�
9K

n
−rCm

1/4 e−K/2lmP(u)+
rCm

3/4

lm
eK/2"

·tK(ruK ·9w) dVK=0 (33)

where

tK=
��2r

Dt
�2

+
�2r �uK�

hK

�2

+
�4(m+mT/sk)

mkhK
2

�2n−1/2

(34)

Similar variational formulations are obtained for the k–e model equations and for the
front-tracking equation.

The momentum and continuity equations are solved using a mixed velocity–pressure
formulation with P1–P1 tetrahedral elements. Scalar variables (logarithms of turbulence
variables and front-tracking function) are discretized using piecewise linear continuous inter-
polants. Time is discretized with an implicit first-order Euler scheme. It means that all terms
except the transient one are using the present time step values, while the time derivative term
is discretized as

(u
(t

=
u−u0

Dt
(35)

Here u is the present time step velocity and u0 is the velocity at the previous time step. The
same time integration scheme is used for all variables. From the authors’ experience, even if
such a method is more dissipative, it provides the needed robustness to deal with complex
three-dimensional problems. A two-step, second-order scheme, such as the Gear scheme, while
less dissipative, generates oscillations in regions of sharp gradients and needs small time steps
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to effectively improve the solution. The one-step second-order Runge–Kutta method is even
less dissipative than the Gear scheme, and therefore is more sensitive to the presence of sharp
gradients, as in near corners, in the wakes, and boundary layers. Moreover, this method
provides the half-step solution for the pressure. Mass conservation, tangency conditions, and
wall shear stress also correspond to the half-step solution. This fact may introduce additional
errors that are difficult to estimate.

In order to control time integration errors, the present work uses a variable time step
approach. Because during the filling process the solution changes mostly near the flow front,
we impose a limit on the maximum Courant–Friedrichs–Lewy (CFL) number of elements
located on the flow front

Dt= min
e� flow front

�CFLmaxLe

Ue

�
(36)

Here, Ue is the mean element velocity, Le is the element size in the direction of the velocity, and
CFLmax is the upper limit of the CFL number on elements located on the free surface.

5. SOLUTION ALGORITHM

The global system of equations is solved in a partly segregated manner. The solution algorithm
is illustrated in Figure 1. At each time step, global iterates are performed for the momentum–

Figure 1. Solution algorithm.
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continuity, turbulence, and front-tracking equations. Sub-iterations of turbulence transport
equations are also used to accelerate the overall convergence of the iterative process.

In References [9,21] a robust finite element scheme is obtained for the k–e model by
rewriting the equations for k and e in block triangular form using the eddy viscosity definition.
The current algorithm was modified in order to improve robustness and convergence. The
logarithmic form of the turbulence equations implemented in the finite element algorithm is as
follows:

r
�(K
(t

+uK ·9K
�

=9 ·
��

m+
mTi

sk

�
9K

n
+rCm

1/4 e−K/2lmi
P(u)−

rCm
3/4

lmi

eK/2 (37)

r
�(E
(t

+uE ·9E
�

=9 ·
��

m+
mTi

se

�
9E

n
+rCmCe1 eK−EP(u)−rCe2 eE−K (38)

Subscript i indicates that the variable is computed using the solution from the previous
iteration. As in Reference [9], the diffusion term, as well as the modified velocities uK and uE,
is computed using the eddy viscosity from the previous iteration, mTi

=rCm e2Ki−Ei. However,
the source terms were rewritten considering the equilibrium between turbulence variables
throughout the mixing length

lm=Cm
3/4 e3/2K−E (39)

The K-equation is solved as for the one-equation model using the mixing length computed
from the previous iteration solution, lmi

=Cm
3/4 e3/2Ki−Ei. Then, the E-equation uses the last

computed values for K, and an implicit discretization for E. This choice provides the right
increment for K and maintains K and E in equilibrium.

The non-linear equations for the velocity and pressure are solved with a few Picard steps
followed by Newton–Raphson iterations. For scalar equations, only Newton’s iterations are
performed. The resulting linear systems are generated directly in a compressed sparse row
format [22], and solved using the biconjugate gradient stabilized (Bi-CGSTAB) iterative
method [23] with an ILU preconditioner. An important reason for using the SUPG formula-
tion is that it also stabilizes the linear systems, making them tractable by iterative solvers [4].

6. NUMERICAL RESULTS

The present solution approach is used to solve two three-dimensional isothermal turbulent
mold-filling problems. The test cases presented are the filling of a plate and the gravity filling
of a mold.

6.1. Filling of a plate

This problem was the subject of an experimental and numerical investigation by Schmid and
Klein [24,25]. The plate is 150 mm high, 100 mm wide, and 2 mm thick. The gate has a width
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Table I. Computational characteristics for the flat plate.

Number of MemoryMesh Number of Computational
elementsnodes time(Mb/processor)

2052 6300 11 0:48 h
2 7881 25 200 5 6:40 h

30 879 100 800 17 53:00 h3

of 45 mm. The cavity is filled with water. A kinematic viscosity of m/r=10−6 m2 s−1 is used.
The fluid enters the cavity at 16 m s−1 and the resulting Reynolds number based on the plate
height is 2.4×106. Two-dimensional numerical simulations were performed by Schmid and
Klein [24,25]. They considered a constant eddy viscosity, 20 times higher than the fluid
viscosity. In the present case, computations use the k–e turbulence model on three-dimensional
meshes. Solutions were obtained for three different meshes. Computations were done on an
Origin 2000 using four processors MIPS R10000 at 195 MHz, working in parallel. Mesh
characteristics, memory requirements, and computational times are summarized in Table I.
The flow front predictions are compared in Figure 2. The present prediction is close to the
numerical solution of Schmid and Klein [24,25]. As expected, the free surface representation
depends on the element size. However, there are little differences between the solutions on
meshes 2 and 3. Numerical predictions for mesh 3 are compared with the experimental data in
Figures 3 and 4. As can be seen, the agreement is good. Except for the interface instability,
which cannot be reproduced in our numerical simulation, the filling features are well
recovered. Some differences between the simulation and the experiment, especially at the end
of the simulation, may be explained by the fact that the solution procedure considers the air
infinitely compressible, as if it can exit freely from the cavity. In the experiment it cannot exit
from the cavity. The simulation of the compressible fluid flow of the air in an enclosed cavity
with a variable volume was not the objective of this work.

6.2. Gra6ity filling of a mold

For this application, the solutions obtained with the one-equation model and with the k–e

model are compared with the experiment performed by McLeod [26]. The fluid is a 50 per cent
water/glycerine solution. This choice was made in order to recover fluid properties close to that
of the liquid aluminum. The properties are summarized in Table II. In the experiment, the
liquid flows from a 0.99-m height. However, a constant flow rate was experimentally observed
by McLeod [26]. Hence, a constant inlet velocity of 0.216 m s−1 was used in the simulations.
The gate laminar Reynolds number is about 104. The problem was solved for a dimensionless
form of the equations. The reference length was considered as L0=2.54×10−2 m and the
reference velocity was compute from U0=
gL0=0.5 m s−1, where g=9.81 m s−2 is gravity.
This results in a dimensionless gravity equal to unity. The gravity acts on the vertical plane
from up to down. The reference pressure is given by p0=rgL0=280 N m−2.

The simulation time runs from 0 to 6.5 s in variable time steps. The time step was computed
in order to obtain a maximum CFL number equal to 0.7 on the fluid–air interface. A total of
600 time steps were required to complete the simulation. For each time step, convergence was
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Figure 2. Filling of a plate: comparison of the numerical predictions for different meshes.

achieved when the relative correction on a global iterate was less than 10−6 for all variables.
In most cases, three global iterations were sufficient to achieve the required tolerance.
Sub-iterations on the non-linear systems on u, k, and e were performed until the relative error
and the L2 norms of the residuals were less than 10−6. The front-tracking equation is linear
and therefore two sub-iterations are enough to reduce the norm of the residual to 10−12.

Simulations were performed with both the one-equation model and the k–e turbulence
model. The inlet turbulence level was set at 1 per cent. In order to estimate the cost associated
to the use of turbulence modeling, computations were also performed for the laminar case with
a constant eddy viscosity ten times higher than the laminar viscosity. For the laminar case, the
turbulent law of the wall was still used, with a constant dimensionless distance to the wall
y+ =30. All computations were performed in parallel on an Origin 2000 using four processors
MIPS R10000 at 195 MHz. The mesh used for this application contains 10319 nodes and
46455 linear elements. The storage of the data structures and linear systems needed 9 Mb on
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Figure 3. Filling of a plate: comparison of the numerical prediction with the experiment, from t=0 to
t=6.31 ms (experimental results from Reference [25] courtesy of Schmid).

each processor. Computations take 17:20 h for the laminar case, 33:40 h with the one-equation
model, and 52:10 h for the k–e model. It shows that the one-equation model solution takes
twice the time of the laminar computation, and that the k–e model needs almost three times
more computational time than the laminar solution.

The extrema of the turbulence variables are summarized in Table III. The maximum values
are obtained near the gate region, while the minimum values are recovered on the lower-right
end of the cavity. There are large variations of the momentum diffusion caused by turbulence
fluctuations. A constant eddy viscosity model cannot account for those variations. The
solution also depends on the implementation of the slip condition close to solid walls. Without
turbulence modeling, the wall shear stress has to be considered from simplified assumptions.
The shear stress may depend on the velocity, as for the present laminar approach, but it cannot
lie on the turbulence level as turbulence variables are not computed. Because the wall shear
stress determines the pressure drop, a constant eddy viscosity model will be inappropriate for
cavities having long, thin sections. The heat transfer is even more sensitive and the temperature
solution largely depends on the accuracy of the heat diffusion. Using a constant eddy thermal
diffusivity for the viscosity will affect the temperature distribution. Consider the case of regions
having low velocities and therefore low turbulence levels, as for the lower-right side of the
cavity. In this region, turbulence models provide a turbulent viscosity 30–60 times lower than
the laminar viscosity. An enhanced viscosity and thermal diffusivity solution will largely
overestimate the heat diffusion in such regions. For real life applications, for which that may
be unacceptable, turbulence modeling has to be incorporated into the solution algorithm.
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Figure 4. Filling of a plate: comparison of the numerical prediction with the experiment, from t=8.42
to t=18.94 ms (experimental results from Reference [25] courtesy of Schmid).

Table II. Material properties for filling problem.

p (kg m−3)Region m (kg (m s)−1)

Filling fluid 1124 4.66×10−3

1.17Air 1.98×10−5

Figure 5 illustrates the flow front progression when the computations were performed with
the one-equation model. The sequence of the filling stages for the k–e solution are shown in
Figure 6. The fluid accelerates in the inlet channel and passes through a gate having 0.125
dimensionless width (note that the reference length is equal to the inlet width). After the gate,
the fluid hits the front wall and part of the fluid turns to the bottom and part of it flows over
the horizontal plane. The two jets produce two strong recirculation regions. Once the bottom
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Table III. Variation of turbulence variables for the gravity filling (min/max).

Variable k model k–e model

8.5×10−6/0.18 5.0×10−7/0.03k (m2 s−2)
6.3×10−7/26.3 5.4×10−7/8.36e (m2 s−3)
1.4×10−4/0.63 7.1×10−5/1.7×10−2m (kg (m s)−1)

Figure 5. Mold-filling problem: flow front progression for the one-equation model.

left part of the cavity is filled (near section A in Figure 7), the recirculation produces a jetting
flow along the vertical wall, especially for the k–e solution. Then, the fluid flows over the
horizontal plane and a jet is formed over the step at section G (see the solutions at t=1.26 s).
Once the bottom of the cavity is entirely filled, the interface becomes almost horizontal as
expected for the filling in presence of gravity forces. As one can see, the interface is smooth
indicating that the level set approach performs well. The results obtained with the k–e model
are comparable with those obtained with the one-equation model. However, the one-equation
model introduces a higher eddy viscosity resulting in more viscous solutions.
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Figure 6. Mold-filling problem: flow front progression for the k–e model.

Figure 7. Mold-filling problem: location of the control stations in the experiment of McLeod [26].
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Figure 8. History of the free surface elevation at different control stations.
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Experimental data for the free surface elevation is available for nine control stations as
illustrated in Figure 7. Numerical predictions are compared with the experiment in Figures
8–10. Dimensionless co-ordinates x̃ and ỹi are computed as x̃=x/L0, ỹi=yi/L0. Subscript i
denotes the free surface. Figure 8 presents the history of the free surface position for each
control station. Good agreement with the experiment is observed. The agreement improves
when moving from left to right (from station A to station I). This is because the flow behind
the gate (near the stations A, B, and C) on the first part of the simulation is dominated by

Figure 9. Position of the free surface: one-equation model compared with experiment.

Figure 10. Position of the free surface: k–e model compared with experiment.
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convection and the free surface elevation depends strongly on the depth location. On the
second part of the simulation (t\3 s), the agreement is excellent for all locations. The free
surface contours at different times are plotted in Figures 9 and 10. The one-equation model
results in closer to experiment solutions. However, the computations were done on a relatively
coarse mesh. The somewhat better predictions of the one-equation model may be the result of
a greater eddy viscosity, which acts like a damping mechanism on the free surface movement.

7. CONCLUSIONS

This paper has presented a methodology for solving transient three-dimensional turbulent
flows for filling processes. A change of dependent variables that guarantees positivity of the
turbulence variables in one- and two-equation turbulence models was presented. The proce-
dure was applied to a simple one-equation turbulence model and to the k–e two-equation
model. The change of dependent variables results in a robust finite element algorithm capable
of solving complex three-dimensional applications.

The finite element solution procedure solves in a partly segregated manner the momentum–
continuity, turbulence, and front-tracking equations. This results in a robust solution al-
gorithm applicable to large-scale three-dimensional problems. Applications have shown that
the present procedure leads to reliable prediction of turbulent mold-filling problems. Solution
for the one-equation model is more robust and cost effective than the one from the k–e model.
Such a simple turbulence model may be a good choice when large and demanding industrial
applications are considered.
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